SAGE Vocabulary Game

SAGE is:

A web-based vocabulary game

Designed to be used in a classroom setting

Able to be used on mobile devices

Instructors can easily create decks and cards for students to use
OAuth is used for teachers to identify themselves

| Am Sage

Vocabulery

Play

SAGE’s Home Page

Add New Deck

Deck Name*

Deck Creation Page



Tools and Platforms Used

Angular - Front-end tool used to build all of the web pages
MongoDB - Backend to store cards and decks

Spark - Hosts the server

IntelliJ IDEA - IDE used for the entirety of the project

Karma - Testing tool used in the agile process

Gradle - Automated build tool used to manage the stack

OAuth - Google’s authentication API to identify teachers

Agile approach - The style our team used to build this project

Zenhub - Used to manage our issues and create a burndown chart
Github - Repository system

Agile Approach

Group stand up meetings

Always working together where we could easily talk

Iterations usually lasted two weeks

Showcases with customer at the end of each iteration

Shopping with customer at the beginning of each iteration to decide what the next best steps are
Good testing environment with Karma and e2e testing

Everyone worked together on everything, no matter what they excelled at

Burndown charts to make sure we were on track

Issues made with story points to properly manage how long things would take



Example of my Contribution

Here is a short example of what I helped do on the front-end web development, first giving an
excerpt from the HTML, and then from the Typescript. This is how we implemented editing deck names
using Angular forms.

<form id="name-form" #newTitleForm="ngForm">
<mat-form-field id="title-input" [ngClass]="{'hide': this.editMode '= true}">
<input id="text-input” matInput required #input type="text" [(ngModel)]="newDeckTitle"
placeholder="{{deck.name}}" name="newDeckTitle" (keyup.enter)="saveEdit()" >

</mat-form-field>

<div class="icon-buttons">

<bhutton [ngClass]="{'hide': this.editMode != false}" id="edit-name" mat-icon-button class="teacher-buttons"
id="edit" (click)="changeMode()"> <i id="edit-icon" class="material-icons">mode_edit</i>

</button>

<button [ngClass]="{'hfide': this.editMode != false}" id="delete-deck" mat-icon-button class="teacher-buttons"
id="delete" (click)="deleteDeck()"><i id="trash-icon" class="material-icons">delete</i>

</button>

</div>

<button [ngClass]="{'hide': this.editMode != true}" color="warn" mat-raised-button class="round-button"
id="save" (click)="saveEdit()" [disabled]="!newTitleForm.form.valid" type="submit">Save Changes

</button>

<button [ngClass]="{'hide': this.editMode !'= true}" color="warn" mat-raised-button class="round-button"
id="cancel” (click)="cancelEdit()"=>Cancel

</button=>

</form=>

changeMode() {
if (this.editMode == false) {
this.editMode = true;
} else {
this.editMode = false;
}

}

f*

Makes a call to the server to update the Deck with the new title of
locally as well so that the page does not need to be refreshed. Cha
iy

saveEdit() {
this.deckService.updatelame (this.newDeckTitle, this.deck. id);
this.deck.name = this.newDeckTitle;
this.changeMode();

}

// Opens the delete deck dialog, which handles the service request
deleteDeck() {

this.openDeleteDeckDialog();
}

cancelEdit() {
this.changeMode();
}



